Correlations between Information Science research groups in Brazil: an approach based on keywords

Autores/as

DOI:

https://doi.org/10.47909/awari.69

Palabras clave:

Text Mining, Lattes Curricula, Research Groups, Information Science

Resumen

Analyzing correlations between research groups has been increasingly appealing in recent years. The identification of proximity between different research projects can not only contribute to triggering new partnerships, but also optimize resources and share results. In Brazil, the Lattes Curriculum System of the Brazilian National Council for Scientific and Technological Development is a rich source of information about the academic and professional life of professors, researchers, and students. Lattes curricula present information, much of it up-to-date, in a semi-structured text format. This paper intends to identify correlations between Brazilian research groups in Information Science through the analysis of keywords contained in the informative summaries and in the descriptions of the research projects found in the Lattes curricula of the participants of these groups. The analysis presented below was made with the application of text mining techniques to the Lattes curricula of researchers linked to 27 graduate programs in Information Science from 24 Brazilian institutions of higher education, totaling 399 curricula analyzed. Among the results obtained, it was possible to identify some existing research trends between the groups and link them to the areas of Information Science, Archivology, Library Science, and Museology. It was also possible to identify the most used research terms at the moment. In addition, the analysis of the occurrence of the terms allowed to identify the areas that concentrate most of the research in Information Science in Brazil, as well as to realize that there is a propensity of researchers to use certain terms to describe their research and their informative summaries.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andrade, P. H. M. A. D. (2015). Aplicação de Técnicas de Mineração de Textos para Classificação de Documentos: um Estudo da Automatização da Triagem de Denúncias na CGU. Brasília, 2015. 65p. Dissertação (Mestrado Profissional em Computação Aplicada). Disponível em: https://repositorio.unb.br/handle/10482/21004. Acesso em: 26 jun. 2020.

Aranha, C., & Passos, E. (2006). A tecnologia de mineração de textos. Revista Eletrônica de Sistemas de Informação, 5(2). Disponível em: http://www.periodicosibepes.org.br/index.php/reinfo/article/view/ 17. Acesso em: 30 jun. 2020. doi: https://doi.org/10.21529/RESI.2006.0502001.

Dias, T. M. R., & Moita, G. F. (2016). Um estudo da produção científica brasileira a partir de dados da Plataforma Lattes. 2016. 181 p. Tese (Doutorado em Modelagem Matemática e Computacional) - Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, 2016. Disponível em: https://sig.cefetmg.br/sigaa/verArquivo?idArquivo=2033874&key=d8d1d2008e1ebe20f0f136527af3a222. Acesso em: 30 jun. 2020.

Domingues, M. L., Favero, E. L., & Medeiros, I. P. (2007). Etiquetagem de Palavras para o Português do Brasil. In Proceedings of the 5th Workshop in Information and Human Language Technology (TIL’2007), Rio de Janeiro, Brazil (pp. 1721-1724). p. 1721-1724. Disponível em: http://www.nilc.icmc.usp.br/til/til2007/arq0179.pdf. Acesso em: 20 jun. 2020.

Dutra, S. T., Lezana, Á. G. R., Dutra, M. L., & Pinto, A. L. (2019). A Bibliometric Analysis of the Scientific Production and Collaboration between Graduate Programs in Manufacturing Engineering in Brazil. Informação & Sociedade, 29(1). Disponível em: https://periodicos.ufpb.br/index.php/pbcib/article/view/47991. Acesso em 20 jun. 2020.

Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge university press. Disponível em: https://www.researchgate.net/publication/200504395_The_text_mining_handbook_Advanced_approaches_in_analyzing_unstructured_data. Acesso em 22 jun. 2020.

Hearst, Marti A. (1999). "Untangling text data mining". Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics. pp. 3–10. doi:10.3115/1034678.1034679. ISBN 978-1-55860-609-8.

Ingersoll, G., Morton, T., & Farris, A. (2013). Taming text. How to Find, Organize, and Manipulate It, Shelter Island, NY/London. Disponível em: https://www.aclweb.org/anthology/P99-1001.pdf. Acesso em: 25 jun. 2020. doi: https://dl.acm.org/doi/10.3115/1034678.1034679

Lattes, P. (2007). Currículo Lattes. Disponível em: http://lattes.cnpq.br/. Acesso em: 30 Mai 2020.

Machado, A. P., Ferreira, R., Bittencourt, I. I., Elias, E., Brito, P., & Costa, E. (2010). Mineração de texto em Redes Sociais aplicada à Educação a Distância. Revista Digital da CVA-RICESU, 6(23). Disponível em: https://www.semanticscholar.org/paper/Mineração-de-texto-em-Redes-Sociais-aplicada-à-a-Machado-Ferreira/60a045db477689ddd00997ef18d30381fe2ee34c. Acesso em: 12 jun. 2020.

Madeira, R. D. O. C. (2015). Aplicação de técnicas de mineração de texto na detecção de discrepâncias em documentos fiscais (Doctoral dissertation). Disponível em: https://bibliotecadigital.fgv.br/dspace/handle/10438/14593. Acesso em 12 jun. 2020.

Mena-Chalco, J. P., & Júnior, C. (2013). Prospecção de dados acadêmicos de currículos Lattes através de scriptLattes. Bibliometria e Cientometria: reflexões teóricas e interfaces. São Carlos: Pedro & João, 109-128. Disponível em: https://www.researchgate.net/profile/Jesus_Mena-Chalco/publication/280113692_Prospeccao_de_dados_academicos_de_curriculos_Lattes_atraves_de_scriptLattes/links/55aa9a8f08aea3d086827791.pdf. Acesso em 20 jun. 2020.

Neves, P. I., Corrêa, D. A., & Cavalcanti, M. C. (2013). Uma análise sobre abordagens e ferramentas para Extração de Informação. Seção de Engenharia e Computação–Instituto Militar de Engenharia (IME). Departamento de Informática–Universidade Federal Rural do Rio de Janeiro (UFRRJ). Laboratório Nacional de Computação Científica (LNCC). Disponível em: http://rmct.ime.eb.br/arquivos/RMCT_3_tri_2013/RMCT_123_E8A_13.pdf. Acesso em: 10 jun. 2020.

Rajman, M., & Besançon, R. (1998). Text mining: natural language techniques and text mining applications. In Data mining and reverse engineering (pp. 50-64). Springer, Boston, MA. Disponível em: https://link.springer.com/chapter/10.1007/978-0-387-35300-5_3. Acesso em: 15 jun. 2020.

Sarkar, D. (2016). Text analytics with Python: A practical real-world approach to gaining actionable insights from your data. New York: Apress; 2016.

Tan, A. H. (1999). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases (Vol. 8, pp. 65-70). sn. Disponível emhttp://: http://www.ntu.edu.sg/home/asahtan/papers/tm_pakdd99.pdf. Acesso em 05 jun. 2020.

Trevisan, A. C. (2015). Mineração de textos no Twitter (Bachelor's thesis, Universidade Tecnológica Federal do Paraná). Disponível em: http://repositorio.roca.utfpr.edu.br/jspui/bitstream/1/6659/1/CT_COSIS_2015_1_01.pdf. Acesso em: 20 jun. 2020.

Weiss, S. M., Indurkhya, N., & Zhang, T. (2015). Fundamentals of Predictive Text Mining. New York: Springer, 2010. 226 p. (Texts in Computer Science).

Publicado

2020-07-23

Cómo citar

Schlogl, G. de F., & Lima Dutra, M. (2020). Correlations between Information Science research groups in Brazil: an approach based on keywords. AWARI, 1(1), e006. https://doi.org/10.47909/awari.69

Número

Sección

Original article